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Summary 
The stereochemical course of the intramolecular allylsilane-aldehyde con- 

densation of l a  has been investigated. A modest preference for the product arising 
from a synclinal orientation of double bonds was observed with Lewis-acid catalysts. 
Cyclization induced by fluoride ion resulted in stereochemical reversal. 

The stereoselective formation of C-C bonds between prochiral centers is one 
of the most important processes in synthetic organic chemistry3), and is becoming 
of greater significance in relation to macro- and acyclic molecules adorned with 
contiguous chiral centers [2]. One of the more synthetically useful examples of this 
reaction is the condensation of allylmetal derivatives with aldehydes to give homo- 
allylic alcohols [ 3 ]  (Scheme 1). This reaction succeeds with a wide variety of metals 

Scheme I 

(B, Al, Si, Ti, Cr, Zr, SII)~) and the stereochemical outcome is, to some extent, 
dependent on the nature of the metal and the reaction conditions. This dependence 
can be classified into three groups5). 
Type I :  the uZ/Zk ratio reflects the (Z) / (E)  ratio in the allyl moiety (B, Al, Sn). 
Type 2: ul-selective reactions independent of allyl geometry (Sn, Si). 
Type 3: Zk-selective reactions independent of allyl geometry (Ti, Cr, Zr). 

I )  Presented at the 185th American Chemical Society National Meeting, Seattle, Washington, 
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5, 

March 1983, Abstract no. Orgn. 214. 
Author to whom correspondence should be addressed. 
For a recent discussion of the variety of reaction included in this process see [ 11. 
In addition to those examples cited in [3] see [4]. 
The nomenclature employed has been proposed recently [ 5 ]  to unambiguously define relative 
stereochemistry and to recognize topological families. 
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Transition state structures have been proposed for all three types [3 a] (Scheme 2). 
These proposals invoke very different geometries of reacting double bonds to 

Scheme 2 
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explain stereoselectivity. Thus, the rigid, chair-like transition state6) in Type 1 
reactions requires a synclinal orientation of double bonds while the 'open' or 
'extended' [7] transition states for Type 2 reactions suggest an antiperiplanar rela- 
tionship. Type 3 reactions with Cr [4n, 01, Zr [4m] and Ti [4j-1] derivatives are sug- 
gested to involve preequilibration to the more stable (E)-double bond geometry 
followed by reaction via a cyclic (Type I )  transition state7). However, nearly all cases 
examined involve intermolecular reactions, precluding an unambiguous assignment 
of transition-state geometry. We have, therefore, initiated a program to study the 
stereochemistry of these reactions in a system which defines all stereochemical 
relationships and examined the dependence of transition state geometry as a 
function of metal and reaction conditions. 

The general model selected (1, Scheme 3) incorporates two stereochemical 
variables and defines, simultaneously, relative topicity [ 5 ]  and S'E-stereochemistryE). 
Inspection of Dreiding models of l a  reveals that the two limiting reactive conforma- 
tions of the aldehyde carbonyl group correspond to antiperiplanar (lk) and synclinal 
(ul) transition-state geometries. We now report: I )  a versatile synthesis of l a  amena- 
ble to the incorporation of various organometallic groups ML,, 2 )  stereochemical 
analysis of the products 2, and 3) preliminary results involving the relative topicity 
of cyclization. 

Scheme 3 

l a  R1=R2=H,  MLn=Si(CH3)3 2 
b R'=RZ=H, MLn=Sn(Bu)3 

6 ,  

') 

s, 

For a discussion of the steric and energetic details of this arrangement in the context of the aldol 
condensation see [6 ] .  
Recent IH-NMR studies suggest that (C=,H=,)2Zr (CH2CH= CHCH3)z complexes are f ~ '  (0-bound) 
and allylically labile [4m]. 
The stereochemistry of SET-substitution with ally1 organornetallics has been addressed with both 
experimental (Si[4a-d] [8] [9], Sn [ 101 and theoretical [ 111 methods. 



HELVETICA CHIMICA A c T A - V O I . ~ ~ ,  Fasc.6 (1983)-Nr. 159 1657 

The synthesis of l a  (Scheme 4) highlights branch points (boxed structures) 
where intermediates can be used to incorporate other metals. Phenylsulfenylation 
[ 121 of 2-trimethylsilyloxy-1,3-cyclohexadiene [ 131 afforded 39) (79-90% yield) 
which was transformed into 49)10) (64-80%) by the method of McMurry et al. [14]. 
Methylidenation of 4 under protic conditions [IS] (49-88%) afforded 59) which 

Scheme 4 
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serves as a precursor for allylsilanes and -stannanes. LiAIH,-reduction of 5 and 
protection of the resulting alcohol produced 69) (81-93%) also a precursor for allylic 
Cr, Zr, and Ti organometallics. Reductive silylation [ 161 of 6 afforded allylsilane 
79) as a single regioisomer (65-75%). Selective deprotection of 7 with fluoride ion 
and CoZZins oxidation [ 171 afforded la9) (65-67%). 

The model system was surprisingly stable, surviving chromatography (SOz) and 
distillation (120"/0.07 Torr), but cyclized readily in the presence of Lewis acids. 
The product mixtures were analyzed by capillary gas chromatography") and the 
stereochemical assignments made by coinjection with independently prepared 
 sample^'^)'^). 

9, All new compounds have been characterized by 'H-NMR (220 or 360 MHz), IR, mass spectrometry 
and combustion analysis (k 0.3%). 

lo) A 3:  2 mixture of diastereoisomers which was not separated. 
' l )  Column: 23 m UV-101. WCOT. 
12) Authentic samples of syn- and anti-2a9) (R'=R2=H) were obtained by NaBH4-reduction of 

6-methylidenebicyclo[2.2.2]octan-2-one [ 181 and flash-chromatographic separation of the alcohols. 
Stereochemistry was assigned based on the slope of LIS of the methylidene group with Eu(fod)3: 
syn-2a, 6.61 ppm/equiv; anti-2a, 2.8 1 ppmlequiv. 

13) syn-2a has also been prepared by unambiguous synthesis, D. Gremaud, unpublished results from 
these laboratories. 

56 
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Table. Cyclization of l a  

l a  syn-2a anti-2a 

Reagent Solvent Temp ("C) X syn %anti 

SnC14 CH2C12 - 70 49 5 1  
Et2AIC1 CH2C12 - 70 66 34 
FeC13 CH2C12 - 70 70 30 
AIC13 CH2C12 - 70 79 21 
BF3.OEt2 CH2C12 - 70 80 20 
nBudN+F- THF 67 30 70 

The results of intramolecular cy~lization'~) are summarized in the Table. To 
obtain clean reactions free from skeletal rearrangement [20], quenching at - 70" 
with NaOH-solution was necessary 15). Control experiments with TMS-ethers of 
syn- and anti-2a demonstrated that the product ratios represent kinetically con- 
trolled reactions. The predominance of the 1-diastereomer (syn-2a) with Lewis 
acids resulting from a synclinal transition state geometry (ul-topicity) is contrary to 
expectation based on recent results with optically active silanes [4a,d]. Kumada et al. 
invoke antiperiplanar double bond alignments to explain the ul-selectivity 
(Scheme 2), but these workers unambiguously establish only the relative (and 
absolute) topicity, not the angular disposition of reactants. The dependence of 
stereoselectivity on Lewis acid serves as a cautionary note; any mechanism claiming 
to explain the stereochemistry of these reactions must intimately incorporate the 
reagents which bring them to bear. In our system there is a crude correlation 
between covalent radius of the Lewis acid metal atom16) and the stereoselectivity, 
i.e. the larger the metal, the less selective the reaction. Accordingly we have exam- 
ined molecular models of the reactive complex l a .  Lewis acid for SnC& and 
BF3l'). Assuming association gives the (E)-complex'8) (Scheme 5) it is seen that the 
major steric contribution arises from interaction between the Lewis acid and the 

Scheme 5 
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For other intramolecular allylsilane-aldehyde (ketone) cyclizations see [ 191. 
Even with this precaution TIC14 gave only rearranged products. 
Covalent radii(A) B, 0.82; Fe, 1.17; Al, 1.18; Sn, 1.41. 
While BF3 forms stable 1 : 1 complexes with aldehydes [21a, b] SnC14 prefers a 1 : 2 stoichiometry 
[2 lc-el. 
Little is known about the stereochemistry of these complexes, for recent speculations see [22]. 
Protonated aldehydes prefer the (E)-configuration (H-atoms cis) [23]. 
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(trimethy1silyl)methylene group. Indeed, it is surprising that syn-products are 
observed at all for SnC14. We interpret this to suggest a stereoelectronic advantage 
for synclinal orientation of reactants under electrophilic conditions. The reversal 
in stereoselectivity in the fluoride-induced cy~lization’~) suggests a change in 
mechanism with attendant changes in stereoelectronic demands. Nucleophilic 
attack on the aldehyde by the allyl fluorosiliconate or allyl anion [24] most probably 
prefers a trajectory not unlike that suggested by Burgi et al. [25]. This is readily 
accommodated only in the antiperiplanar alignment (Zk-topicity) of double bonds. 

Work is in progress on the synthesis of the analogous allylstannane 1 b and the 
complete model system with a deuterium label (R’ or R2= D). The stereochemical 
results from a model which eliminates the diastereoisomeric bias inherent in 2 will 
be reported. 

Financial support was provided by the National Science Foundation (CHE-8208565) to whom we 
are grateful. This work was supported in part by the University of Illinois Regional Instrumentation 
Facility (NSF-CHE 79- 16100) and Mass Spectromerry Laboratory (NIH GM 27029). 
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